8 research outputs found

    WeedFocusNet: A Revolutionary Approach using the Attention-Driven ResNet152V2 Transfer Learning

    Get PDF
    The advancement of modern agriculture is heavily dependent on accurate weed detection, which contributes to efficient resource utilization and increased crop yield. Traditional methods, however, often need more accuracy and efficiency. This paper presents WeedFocusNet, an innovative approach that leverages attention-driven ResNet152V2 transfer learning addresses these challenges. This approach enhances model generalization and focuses on critical features for weed identification, thereby overcoming the limitations of existing methods. The objective is to develop a model that enhances weed detection accuracy and optimizes computational efficiency. WeedFocusNet, a novel deep-learning model, performs weed detection better by employing attention-driven transfer learning based on the ResNet152V2 architecture. The model integrates an attention module, concentrating its predictions on the most significant image features. Evaluated on a dataset of weed and crop images, WeedFocusNet achieved an accuracy of 99.28%, significantly outperforming previous methods and models, such as MobileNetV2, ResNet50, and custom CNN models, in terms of accuracy, time complexity, and memory usage, despite its larger memory footprint. These results emphasize the transformative potential of WeedFocusNet as a powerful approach for automating weed detection in agricultural fields

    Genetic divergence in betelvine (Piper betle L.)

    Get PDF
    Genetic divergence was assessed in a population of 51 genotypes of betelvine (Piper betle) for seven characters using Mahalanobis D2 technique. The genotypes were grouped into six clusters. The clustering pattern of the genotype was random and did not follow geographical origin, indicating that geographical isolation may not be the only factor causing genetic diversity. Leaf area contributed maximum towards genetic diversity in betelvine. Cluster analysis revealed wide genetic distance between Cluster V and Cluster VI followed by Cluster IV and Cluster VI, and Cluster III and Cluster V. Thus, selections of parents from the clusters with high inter and intra cluster distance will help to obtain substantial heterosis in respect of economic traits during hybridization programme. &nbsp

    Isolation and evolutionary analysis of Australasian topotype of bluetongue virus serotype 4 from India

    Get PDF
    Bluetongue (BT) is a Culicoides-borne disease caused by several serotypes of bluetongue virus (BTV). Similar to other insect-borne viral diseases, distribution of BT is limited to distribution of Culicoides species competent to transmit BTV. In the tropics, vector activity is almost year long, and hence, the disease is endemic, with the circulation of several serotypes of BTV, whereas in temperate areas, seasonal incursions of a limited number of serotypes of BTV from neighbouring tropical areas are observed. Although BTV is endemic in all the three major tropical regions (parts of Africa, America and Asia) of the world, the distribution of serotypes is not alike. Apart from serological diversity, geography-based diversity of BTV genome has been observed, and this is the basis for proposal of topotypes. However, evolution of these topotypes is not well understood. In this study, we report the isolation and characterization of several BTV-4 isolates from India. These isolates are distinct from BTV-4 isolates from other geographical regions. Analysis of available BTV seg-2 sequences indicated that the Australasian BTV-4 diverged from African viruses around 3,500 years ago, whereas the American viruses diverged relatively recently (1,684 CE). Unlike Australasia and America, BTV-4 strains of the Mediterranean area evolved through several independent incursions. We speculate that independent evolution of BTV in different geographical areas over long periods of time might have led to the diversity observed in the current virus population

    <span style="font-size:11.0pt;font-family: "Times New Roman";mso-fareast-font-family:"Times New Roman";mso-bidi-font-family: Mangal;mso-ansi-language:EN-GB;mso-fareast-language:EN-US;mso-bidi-language: HI" lang="EN-GB">Synthesis and antibacterial activity of di-heteryl substitued [1,2,4]triazolo [3,4-<i>b</i>][1,3,4]thiadiazoles</span>

    No full text
    590-597A new series of 3-(5-methyl-1-phenyl-1H-4-pyrazolyl)-6-(5-methyl-1-aryl-1H-1,2,3-triazol-4-yl)[1,2,4]triazolo [3,4-b][1,3,4]thiadiazoles 12a-j have been prepared and assayed for their antibacterial activity against human pathogenic Gram-positive bacteria viz., Staphylococcus aureus, Bacillus subtilis and Gram-negative Escherichia coli. Among the screened compounds 12b, 12c and 12f, in which phenyl ring of triazole moiety bear 4-chloro, 4-nitro and 4-fluoro substituents respectively, showed high activity against all the micro-organisms employed. The activities of these compounds are almost equal to the standards.</span

    Not Available

    No full text
    Not AvailableBluetongue (BT) is a Culicoides-borne disease caused by several serotypes of bluetongue virus (BTV). Similar to other insect-borne viral diseases, distribution of BT is limited to distribution of Culicoides species competent to transmit BTV. In the tropics, vector activity is almost year long, and hence, the disease is endemic, with the circulation of several serotypes of BTV, whereas in temperate areas, seasonal incursions of a limited number of serotypes of BTV from neighbouring tropical areas are observed. Although BTV is endemic in all the three major tropical regions (parts of Africa, America and Asia) of the world, the distribution of serotypes is not alike. Apart from serological diversity, geography-based diversity of BTV genome has been observed, and this is the basis for proposal of topotypes. However, evolution of these topotypes is not well understood. In this study, we report the isolation and characterization of several BTV-4 isolates from India. These isolates are distinct from BTV-4 isolates from other geographical regions. Analysis of available BTV seg-2 sequences indicated that the Australasian BTV-4 diverged from African viruses around 3,500 years ago, whereas the American viruses diverged relatively recently (1,684 CE). Unlike Australasia and America, BTV-4 strains of the Mediterranean area evolved through several independent incursions. We speculate that independent evolution of BTV in different geographical areas over long periods of time might have led to the diversity observed in the current virus population.Not Availabl

    Not Available

    No full text
    Not AvailableBluetongue (BT) is a Culicoides-borne disease caused by several serotypes of bluetongue virus (BTV). Similar to other insect-borne viral diseases, distribution of BT is limited to distribution of Culicoides species competent to transmit BTV. In the tropics, vector activity is almost year long, and hence, the disease is endemic, with the circulation of several serotypes of BTV, whereas in temperate areas, seasonal incursions of a limited number of serotypes of BTV from neighbouring tropical areas are observed. Although BTV is endemic in all the three major tropical regions (parts of Africa, America and Asia) of the world, the distribution of serotypes is not alike. Apart from serological diversity, geography-based diversity of BTV genome has been observed, and this is the basis for proposal of topotypes. However, evolution of these topotypes is not well understood. In this study, we report the isolation and characterization of several BTV-4 isolates from India. These isolates are distinct from BTV-4 isolates from other geographical regions. Analysis of available BTV seg-2 sequences indicated that the Australasian BTV-4 diverged from African viruses around 3,500 years ago, whereas the American viruses diverged relatively recently (1,684 CE). Unlike Australasia and America, BTV-4 strains of the Mediterranean area evolved through several independent incursions. We speculate that independent evolution of BTV in different geographical areas over long periods of time might have led to the diversity observed in the current virus population.Not Availabl

    Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research

    No full text
    corecore